Selected publications

2017
TalStern, Kaner I, Zer NL, Shoval H, Dror D, Manevitch Z, Chai L, Brill-Karniely Y, Benny O. Rigidity of polymer micelles affects interactions with tumor cells. Journal of Controlled Release [Internet]. 2017;257 :40-50. Publisher's VersionAbstract

Controlling the interaction of drug delivery systems (DDS) with tissues is critical for the success of therapies. Specifically in cancer, due to the high density of the tumors, tissue penetration of DDS is critical and may be challenging. In previous work we have shown that Solidified Polymer Micelles (SPMs) rapidly internalize into cells and tissues. Using AFM analysis, in the present work we measured differences in rigidity of SPM compared with Wet Polymer Micelles (WPM). We further examined whether the semi-solid form of hydrated SPMs has an effect on the interaction with tumor cells both in mono-layer systems and in multi-layer clusters of cells as spheroids. For that we have performed detailed characterization of SPM compared to WPM, including examinations of particle size, stability, drug release kinetics and cell transcytosis, in melanoma A-375 cells. Cell uptake measurements were done using fluorescent signal analysis, FACS and microscopy imaging, showing enhanced abilities of SPMs to penetrate cells and tissues. A simple physical model is presented that well agrees with the experiments and provides insight about the role of particle rigidity in the engulfment mechanism. We conclude that particle rigidity enhances cellular uptake and tissue penetration and that SPMs have a promising potential as an effective and highly permeable DDS. Our findings can be important in future rational design of DDS for particle adjustment to specific tissues and pathologies.

2013
Chai L, Romero D, Kayatekin C, Akabayov B, Vlamakis H, Losick R, Kolter R. Isolation, characterization, and aggregation of a structured bacterial matrix precursor. Journal of Biological Chemistry [Internet]. 2013;288 :17559-17568. Publisher's VersionAbstract

Biofilms are surface-associated groups of microbial cells that are embedded in an extracellular matrix (ECM). The ECM is a network of biopolymers, mainly polysaccharides, proteins, and nucleic acids. ECM proteins serve a variety of structural roles and often form amyloid-like fibers. Despite the extensive study of the formation of amyloid fibers from their constituent subunits in humans, much less is known about the assembly of bacterial functional amyloid-like precursors into fibers. Using dynamic light scattering, atomic force microscopy, circular dichroism, and infrared spectroscopy, we show that our unique purification method of a Bacillus subtilis major matrix protein component results in stable oligomers that retain their native α-helical structure. The stability of these oligomers enabled us to control the external conditions that triggered their aggregation. In particular, we show that stretched fibers are formed on a hydrophobic surface, whereas plaque-like aggregates are formed in solution under acidic pH conditions. TasA is also shown to change conformation upon aggregation and gain some β-sheet structure. Our studies of the aggregation of a bacterial matrix protein from its subunits shed new light on assembly processes of the ECM within bacterial biofilms.

2011
Chai L, Vlamakis H, Kolter R. Extracellular signal regulation of cell differentiation in biofilms. MRS Bulletin [Internet]. 2011;36 (5) :374-379. Publisher's VersionAbstract

Bacteria often live in the form of surface-associated communities of cells termed biofilms. Within biofilms, there is a division of labor in which genetically identical cells differentiate to serve distinct functions. This cellular differentiation results from a response to extracellular signals that occur due to changes in the local environment of a cell or in response to signaling molecules that the cells themselves produce. In this review, we discuss differentiation in biofilms, focusing on the molecular mechanisms that regulate differentiation in the bacterium Bacillus subtilis. In this organism, there is a subpopulation of cells within a biofilm that produces a signal, while a different subpopulation of cells responds to it. Studying what signals cells use to communicate with each other within a biofilm will allow for better design of strategies to prevent and disrupt biofilms.

Pages